

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra Federal Office for Agriculture FOAG Federal Office for the Environment FOEN

Swiss Federal Plant Protection Service SPPS

EPPO Workshop for inspectors

LAMP based identification of quarantine insects at the airports of Zürich and Geneva

13. – 14.12.2017

Andreas von Felten, PhD Head of Plant Protection Inspectors Swiss Federal Plant Protection Service SPPS Federal Office for Agriculture

2. Implementation at the airports

- 3. Conclusion
- 4. Outlook

Why do we need a tool for on-site diagnosis:

- The morphological on-site identification can be difficult
- Especially for insects species at developmental stages (e. g. eggs and larvae)

Why do we need a tool for on-site diagnosis:

- The morphological on-site identification can be difficult
- Especially for insects species at developmental stages (e. g. eggs and larvae)

 If plant health inspectors detect insects suspected to be QOs, samples are sent to Agroscope for DNA barcoding analysis

Shipment of samples to the laboratory and DNA barcoding analysis require 2-3 working days

Why do we need a tool for on-site diagnosis:

 Plant imports are often perishable goods (e. g. fresh fruits or vegetables)

Mentha arvensis from Vietnam with Bemisia tabaci

EPPO workshop for Inspectors 13.-15.12.2017 Andreas von Felten

Why do we need a tool for on-site diagnosis:

- Plant imports are often perishable goods (e. g. fresh fruits or vegetables)
- Import delay can result in economic damage
 - Perishable goods can not wait!

Solution:

Rapid molecular tests for on-site identification

Method to be used: LAMP = <u>L</u>oop Mediated Isothermal <u>Amp</u>lification

- Isothermal DNA amplification
- Robust against amplification inhibitors
- Highly specific (six primers)
- Can be performed on a portable device (Genie II, Optigene®)
- \rightarrow Suitable for on-site application

Method to be used:

LAMP = Loop Mediated Isothermal Amplification

In the framework of the EU-Project Q-Detect (WP7), LAMP-assays were developed for several Quarantine pests:

Different Bactrocera species
Bemisia tabaci
Different Liriomyza
Thrips palmi

Validation of the assays by Agroscope showed:

- 383 samples were tested
- > 97.2% of the results were positive
- No wrong-positive results

► Low amount of false-negative results (2.8%) → redesign of primers EPPO workshop for Inspectors 13.-15.12.2017 Andreas von Felten

Source: optigene.co.uk

Requirement for a two-stage identification system

Source: optigene.co.uk

Limitations of DNA amp. based test

- DNA amplification based methods only detect pre-defined targets
- Rare false-negative results due to previously undescribed pest biotypes are to be expected (biotypes not included in the primer design process)

Solution:

To ensure 100% sensitivity of the identification system, <u>LAMP</u> - <u>negatively</u> tested specimen are analyzed by DNA barcoding

Important: In case of a positive LAMP results → Inspector can directly reject infested commodities

Modification for on-site application

<u>Goal:</u> Performable for Plant health inspectors with minimal laboratory training

- Simplification of handling (1-pipetting-step)
- Production of pre-mixed LAMP kits
- Staining of chemicals (Cresol Red)

Source: Eppendorf-Tube, https://openclipart.org PCR-Tubes, www.vwr .com Pipette, http://bmskgroup.com *T. palmi*: http://mrec.ifas.ufl.edu

Modification for on-site application

<u>Goal:</u> Performable for Plant health inspectors with minimal laboratory training

- Simplification of handling (1-pipetting-step)
- Production of pre-mixed LAMP kits
- Staining of chemicals (Cresol Red)
- Simple interpretation of results

Modification for on-site application

Bericht - LAMP Importuntersuchung

Auftrags Angaben

Analysedatum:	24.11.2017	Bemerkung zum Report:
		Herkunftsland: XA Startzeit: 14:35
Standort:	EPSD ZH	Wirtspflanze: Ocimum basilicum green
		Stadium pot.QO Ei 🗌 Larve 🗸
Probe Nr:	932984420	Puppe Adult
		Übertragung: Nadel 🗌 Zahnstocher 🗸
Kürzel Name:	sdc	Zeit pos.Kontrolle [min/max]: 27:30 min

Resultat LAMP Test

Stichprobe 1	GENIE-Positio	on A1				
Probe Nr.:	Nr. 932984420-1		Bemerkung			
Verdachtsorganismus:	Bemisia tabaci		zur Probe:			
Organismus	Amplifikation	Zeit	Annealing [°C]	Pos. Kontr.	Neg. Kontr.	Resultat
Bemisia tabaci	Ja	56:15	81.35	Positiv	Negativ	Positiv
Weiteres vorgehen:	Stichprobe positiv und gültig. Resultat kann direkt verwendet werden. Einsendung dieser Stichprobe an Agroscope Wädenswil nicht erforderlich.					

Stichprobe 2	GENIE-Positio	on A2				
Probe Nr.:	Nr. 932984420-2		Bemerkung			
Verdachtsorganismus:	Bemisia tabaci		zur Probe:			
Organismus	Amplifikation	Zeit	Annealing [°C]	Pos. Kontr.	Neg. Kontr.	Resultat
Bemisia tabaci	Ja	50:00	81.8	Positiv	Negativ	Positiv
Weiteres vorgehen:	Stichprobe positiv und gültig. Resultat kann direkt verwendet werden. Einsendung dieser Stichprobe an Agroscope Wädenswil nicht erforderlich.					erden. forderlich.

2. Implementation at the airports

Installation of workstation:

2. Implementation at the airports

Knowledge transfer, training and certification:

- Theoretical basics of LAMP Method
- Introduction into basic laboratory work
- Guided performance of LAMP assay
- Safety instructions
- Test for certification

Andreas von Felten

Implementation at the airports 2.

Validation:

Phase I[.]

- First 10 samples per organisms and point of entry (ZH/GE) were checked at Agroscope by Sanger sequencing
- If the all 10 results per organism are correct \rightarrow test will be considered as validated

Phase II:

- Positive result \rightarrow inspectors can directly apply measures based on the LAMP result
- Negative result \rightarrow sample must be sent to Agroscope for further analyses

Quality control:

Blind-test

2. Implementation at the airports

Validation data airport of ZH (09/2016):

LAMP Kit	No. of analyses	No. of correct-positive results	No. of false-positive results	No. of correct-negative results	No. of false-negative results	
Bactrocera Triplex ¹	15	12	0	3	0	
B. tabaci	15	15	0	0	0	
Liriomyza sativae	6	1	0	5	0	
Liriomyza duplex ²	7	6	0	1	0	
T. palmi	3	3	0	0	0	
Total	46	37	0	9	0	

¹ includes *B. dorsalis* group, *B. latifrons / cucurbitae*, *B. correcta / zonata* ² includes *L. trifolii / huidobrensis*

2. Implementation at the airports

Information about analysis performed 2017:

POE	Bactrocera Triplex	Bremisia tabaci	Liriomyza sativae	Liriomyza Duplex	Thrips palmi	Result
Geneva	6	2	0	0	5	True positive
	0	0	0	0	0	True negative
Zürich	6	8	0	1	6 (1)	True positive
	1	0	2	1	0	True negative

V 3. Conclusions

Preparation of samples is challenging:

 Caching a *Thrips* and transferring it into the reaction solution with a toothpick.

Use of acupuncture needle

> Adapted procedure:

3. Conclusions

Kit had to be adapted (early stage):

Same picture if test would not work

It is easy to detect for the inspector, that the reaction worked.

3. Conclusions

- LAMP assays are suitable tools for on-site diagnostics
- Allow reliable differentiation between regulated and non-regulated organisms within 1 hour to 2 hours
- LAMP assays were shown to be 100% specific
- DNA amplification based technology → always a risk of false-negative results due to the appearance of previously unknown pest biotypes

V 4. Outlook

- Finishing the Validation in Geneva
- Developing new LAMP assays for relevant quarantine pests (e.g. Spodoptera frugiperda, Spodoptera litura, Keiferia lycopersicella)
- Increase the knowledge of the inspectors to identify quarantine pests.
- Development of a standard Blind- Test for the evaluation of the inspectors.
- Strengthen the collaboration with other POE who are using LAMP technology or are interested in using LAMP technology.

Acknowledgments

Hanspeter Diem¹, **Simon Blaser²**, Jürg E. Frey², Andreas Bühlmann^{3,}

¹Federal Office for Agriculture, Swiss Federal Plant Protection Service (SPPS) ²Agroscope, Method Development and Analytics, Waedenswil ³Agroscope, Plant and Plant Products, Waedenswil

Thank you for your Attention