

Cabbage stem flea beetles and the neonic ban – UK perspective Simon Kightley & Cheryl Turnbull

emphasisproject.eu

Psylliodes chrysocephala

Public enemy Number one!

UK oilseed rape crop areas – 1970-2016

UK oilseed rape crop areas – 1970-2016

Harvest year

Control products recommended in 1989

- Carbofuran
- Cypermethrin
- Deltamethrin
- Fenvalerate
- Fonophos
- Gamma-HCH
- Permethrin
- Phorate
- Primiphos-methyl
- Captan + gamma-HCH

Control products recommended in 1989

- Carbofuran
- Cypermethrin
- Deltamethrin
- Fenvalerate
- Fonophos
- Gamma-HCH
- Permethrin
- Phorate
- Primiphos-methyl
 Captan + gamma-HCH

BANNED/WITHDRAWN INEFFECTIVE/RESISTANCE INEFFECTIVE/RESISTANCE BANNED/WITHDRAWN BANNED/WITHDRAWN BANNED/WITHDRAWN INEFFECTIVE/RESISTANCE BANNED/WITHDRAWN BANNED/WITHDRAWN BANNED/WITHDRAWN

Control products recommended in 1989

- Carbofuran
 Cyperm
 Deltame
 Fenvale
 Main Control Contro Control Control
- Fonophe
 Gamma
 To our rescue....
- Permethrin
- Phorate
- Primiphos-methyl
- Captan + gamma-HCH

INEFFECTIVE/RESISTANCE BANNED/WITHDRAWN BANNED/WITHDRAWN BANNED/WITHDRAWN

WN

WN

2014, 2015, 2016 & 2017

Four autumns of contrasting experiences..... And most of them very unpleasant and depressing!

Season comparisons

 2014/15: Cool dry September; winter above average temperatures

Autumn 2014

Autumn 2014

Adult damage to crop establishment - before, during and after emergence

Season comparisons

- 2014/15: Cool dry September; winter above average temperatures
- 2015/16: Warmer September with better rainfall; winter above average temperatures
- 2016/17: Dry September; Early October/November frosts and more normal winter
- 2017/18: Good rainfall so far so good.....

Larval feeding damage

What we learnt about good establishment

- Trap cropping with treated seed
- Early sowing
- Fine seed bed
- Seed bed moisture
- Seed bed nutrients
- Insect monitoring
- Avoidance of pre-emergence herbicides

CSFB Monitoring

Yellow sticky Traps

Blue sticky Traps

Pheromone Traps

- Good success with Yellow Sticky traps
- Water traps effective but management issues
- Inform pesticide applications
- Monitor progress of migration

What we learnt about good establishment for trials:

- Trap cropping with treated seed
- Early sowing
- Fine seed bed
- Seed bed moisture
- Seed bed nutrients
- Insect monitoring
- Avoidance of pre-emergence herbicides

Two new initiatives introduced for Autumn 2015

Crowd Sourcing farm survey

• Experiments with companion crops

Crowd Sourcing map-Autumn 2015

Questionnaire

- Sowing date
- Crop area
- Cultivation/Establishment
- Insecticide seed treatment and sprays
- Variety type
- Classify crop into 5 damage categories (1 = good; 5 = bad)

Crop damage intensity

Provisional findings

Γ		Combined		
		damage score	No. of obs.	
	Variety type 🔵			
	Mixed	25.3	30	
	Conventional	25.4	78	
	Hybrid	27.7	73	
\langle	Establishment methe	od		
ļ	Autocast	15.4	7	
	Plough	21.4	33	
	Non-inversion	24.1	63	
,	Subcast	27.7	32	
	Direct drill	33.5	46	
\langle	Seed treatment			
	Other	22.3	65	
	None	26.3	95	
	Neonicotinoid	36.2	21	

Crowd sourcing - Autumn 2016

We asked for responses from farmers who had stopped growing oilseed rape – Black pins

Fewer responses: Had become over complicated

Sowing date x beetle damage

Sowing date x beetle damage

A less clear relationship with sowing date because the dry conditions delayed emergence, especially in the south-east

Experiments with companion crops

42 I RU

Three locations with low, medium and high CSFB pressure

Seed rate x companion crop experiment

Companion	OSR seed rate/m ²					
crop	60	80	100	120		
No companion crop	N60	N80	N100	N120		
Mixture A	A60	A80	A100	A120		
Mixture B	B60	B80	B100	B120		
Mixture C	C60	C80	C100	C120		

OSR variety:

A = Insect deterrent?

B = Insect attractant:

C = Insect neutral:

Replicates: Sites:

CHARGER

Fenugreek (Trigonella foenungraecum) Pak choi/Chinese cabbage/salad rocket/linseed Berseem clover/crimson clover/Persian clover/common vetch

4 3 – Cambridge (Hinxton), Morley, Sutton Scotney

Early establishment

Brassica linseed mix Collaborative results with PhD student Duncan Coston, Supervised by Sam Cook & Lin Field (Rothamsted Research); Tom Breeze & Simon Potts (University of Reading)

Plant Science into Practice Damage observations (1 good; 5 bad)

Cambridge obs.							
Treatment	Trt x	sdrt	Trt means				
name	29/09	15/10	29/09	15/10			
OSR 60	3.8	4.3					
OSR 80	3.5	3.8					
OSR 100	3.3	3.5					
OSR 120	3.8	3.3	3.6	3.7			
A OSR 60	4.0	3.3					
A OSR 80	3.5	2.8					
A OSR 100	3.5	3.3					
A OSR 120	3.5	3.0	3.6	3.1			
B OSR 60	2.3	1.0					
B OSR 80	2.0	1.0					
B OSR 100	2.3	1.0					
B OSR 120	2.5	1.0	2.3	1.0			
C OSR 60	3.5	2.8					
C OSR 80	3.3	2.5					
C OSR 100	3.0	2.5					
C OSR 120	3.3	2.5	3.3	2.6			

Morley obs.							
Treatment	Trt x	sdrt	Trt means				
Name	12/1	26/1	12/1	26/1			
OSR 60	3.5	3.5					
OSR 80	3.3	3.3					
OSR 100	3.5	3.5					
OSR 120	3.5	3.3	3.5	3.4			
A OSR 60	3.3	3.0					
A OSR 80	3.3	2.8					
A OSR 100	3.5	3.0					
A OSR 120	3.3	3.0	3.4	3.0			
B OSR 60	3.0	3.0					
B OSR 80	3.0	2.8					
B OSR 100	3.0	3.0					
B OSR 120	3.0	2.3	3.0	2.8			
C OSR 60	3.3	3.0					
C OSR 80	3.3	2.8					
C OSR 100	3.3	2.5					
C OSR 120	3.3	2.8	3.3	2.8			

Control of companion species

- No killing frosts in 2015/16 winter
- Several herbicide applications were tried but were rather ineffective post-Christmas and limited by label regulations
- Brassica/linseed mix was particularly resilient – crowded-out the OSR

Yield - No CSFB pressure

Yield (t/ha) Sutton Scotney - 2016

Companions for 2016/17

		1000				
	Mix	seed	seeds	seed	Plot	Packet
Crop	code	weight	/m2	wt/m2	size	size
OSR		4.5	60	0.27	20	5.4
OSR		4.5	90	0.41	20	8.1
OSR		4.5	120	0.54	20	10.8
Companions						
Fenugreek	A	12.0	250	3.00	20	60.0
Pak choi	В	1.9	80	0.15	20	3.0
Chinese kale	В	4.0	80	0.32	20	6.4
Choi sum	В	2.4	80	0.19	20	3.8
Rocket	С	1.4	125	0.18	20	3.5
White mustard	С	7.4	125	0.93	20	18.5
Buck wheat	D	33.4	250	8.35	20	167.0

14/12 2016 Cambridge - Fenugreek

No surviving oilseed rape

14/12 2016 Cambridge – Brassica mix

No surviving oilseed rape

Buck wheat, with OSR plots in foreground

No surviving oilseed rape

White mustard, and 34 ha of weeds and desolation

But what have we here?!

Autumn 2016 – Morley - damage

Trt. No.	WOR sdrt	Companion mix	09/09	14/09	19/09	26/09	07/10	12/10
1	60	-	1.0	2.7	2.7	3.3	2.0	1.0
2	90	-	1.0	3.0	2.7	3.7	2.3	1.3
3	120	-	1.0	3.0	3.0	3.3	2.3	1.0
4	60	Fenugreek	1.0	2.7	2.7	2.7	2.0	1.0
5	90	Fenugreek	1.0	2.7	2.3	2.7	2.0	1.0
6	120	Fenugreek	1.0	2.0	2.3	3.0	2.0	1.0
7	60	Chinese brassicas	1.0	2.7	3.0	3.3	2.7	2.3
8	90	Chinese brassicas	1.0	2.3	3.0	3.3	2.7	2.0
9	120	Chinese brassicas	1.0	2.7	3.0	3.7	3.0	1.7
10	60	Mustard & Rocket	1.0	1.7	1.7	2.0	2.3	1.0
11	90	Mustard & Rocket	1.0	1.7	2.0	2.0	2.3	1.3
12	120	Mustard& Rocket	1.0	2.0	2.0	2.0	2.0	1.3
13	60	Buck wheat	1.0	1.7	2.0	3.0	3.0	1.0
14	90	Buck wheat	1.0	2.7	3.0	3.0	2.7	1.0
15	120	Buck wheat	1.0	2.7	2.7	3.0	3.0	1.0
Averaged over treatments		1.0	2.4	2.5	2.9	2.4	1.3	

Good companion-bad companion

OSR stunted in mustard mix

Observations on the 2017 companions

- All except Rocket (*Eruca sativa*) proved susceptible to the frost
- The white mustard/rocket mix appeared to have potential for protecting the crop
- But:
- If not controlled until after the winter, it will stunt the OSR and reduce yield potential
- Much work still to do

Overall conclusions

- Cabbage stem flea beetles remain a huge threat to the oilseed rape crop
- Threat is greater for later sowings
- Attention to improved conditions for rapid germination is important
- No immediate promise of chemical control
- Successive cold winters may help
- Companion crops have potential and white mustard seems to be the best candidate

More work needed

2017/18

- Companion crop studies concentrating exclusively on white and brown mustards
- Early indications of lower flea beetle pressure in traditional areas
- Problems increasing in more peripheral areas
- Repeat survey with wider participation?

