IPM for seedling insects in winter and spring oilseed rape production.

EMPHASIS

Effective Management of Pests and Harmful Alien Species - Integrated Solutions

emphasisproject.eu

Practical solutions

EPPO Workshop on integrated management of insect pests in oilseed rape

Berlin, 2017-09-20/22

I.Gaile, G. Gulbis

EMPHASIS' FRAMEWORK

 THE EUROPEAN PROGRAMME Horizon 2020, the Framework Programme for Research and Innovation (2014-2020)

THE PROJECT

EMPHASIS - Effective Management of Pests and Harmful Alien Species – Integrated Solutions

DURATION

48 months (2015-2019)

COORDINATOR

Maria Lodovica Gullino

UNIVERSITÀ DEGLI STUDI DI TORINO

Agroinnova, Center of Competence for the Innovation in Agro-environmental Center of the University of Torino (Italy)

ACTIVITIES

PREDICT

pest management challenges and opportunities will be evaluated according to stakeholder-focused criteria and through pathway analysis.

WP1

PREVENT

practical solutions for surveillance in different pathways to enhance preparedness will be provided to endusers, and monitoring tools following outbreaks and eradication will be developed.

WP2

PROTECT

practical solutions for managing native and alien pests in agriculture, horticulture and forestry will be developed, their technical and economic feasibility will be demonstrated and their market uptake will be enhanced.

WP3 – WP4

PROMOTE

a mutual learning process with end-users will be developed, and the solutions identified by the project will be promoted through training and dissemination.

WP5

EMPHASIS' NUMBERS

- 4 YEARS DURATION
- 13 PATHOSYSTEMS (IPM for OSR seedling insects is one of 13)
- 10 COUNTRIES INVOLVED
- 21 ENTERPRISES, (9 SME)
- MORE THAN 1.000 MAN/MONTH OF WORK

PATHOSYSTEMS TO BE STUDIED

Agri-ecosystem/Target plants	Target pests	Management approaches
(Field crops) Cereals	Puccinia spp. on wheat	Optimized chemical control, Host plant resistance, Sentinel crops.
	Aphids	Biological control with endogenous entomopathogenic fungi.
	Ambrosia artemisiifolia on summer cereals	Optimized chemical control (selective herbicides), Cultural control (mechanical means).
(Field crops) Rotation oilseed rape (OSR) and wheat	Mycosphaerella graminicola Leptosphaeria maculans	Biological control, Cultural Control (debris management), Optimized use of chemicals, Sentinel crops.
	Seedlings insects	IPM, Optimized chemical control.
(Protected crops) Vegetables and high-value crops	Bemisia tabaci and associated viruses	Biological control with new macrobials (predatory bugs and mites). Enhancing efficacy of entomopathogenic fungi.
	Downy mildew Soil-borne diseases	Host plant resistance, Physical methods, Optimized chemical control, Biological Control, Cultural control, LAMP assays, metagenomic approaches.
(Orchards) Pome fruit	Cydia pomonella	Semiochemicals (validation of puffer pheromones technique), Cultural control
(Forestry and amenity plants) Fraxinus	Chalara fraxinea	Host resistance.
(Forestry and amenity plants) Conifers	Heterobasidion irregulare Heterobasidion spp.	Screening microbials for biological control, Cultural control, Optimized chemical (user-friendly devices) and biological control, Sanitation procedures for eradication.
(Open land) Amenity plants, Non-agricultural areas	Ambrosia artemisiifolia Ailanthus altissima Heracleum spp.	Optimized chemical control (non-persistent broad spectrum pesticides), Cultural control (mechanical and physical means), Biological control.

COUNTRIES INVOLVED

THE PARTNERS

Agoinnova (AGROINNOVA)

Research Agency

Imperial College London

Confederazione Generale dell'Agricoltura Italiana (CONFAGRICOLTURA)

European and Mediterranean Plant Protection Organisation (EPPO) Food and

Environment Research Agency (FERA)

Imperial College London (IMPERIAL)

(INRA)

Integrētās Audzēšanas Skola Ltd. (IAS)

Mendel University in Brno (MENDELU)

Metec Innovation Consulting Srl (METEC)

Moverim Consulting (MOVERIM)

OPTISENSE Limited (OPTISENSE)

for Central and Eastern Europe (REC)

Semios BIO Technologies Inc (SEMIOS)

SPIN-TO Srl (SPINTO)

Stichting Dienst Landbouwkundig Onderzoek (DLO)

Universidad de Lleida (UdL)

EMPHASIS project. IPM for seedling insects in winter and spring oilseed rape production.

"Integrētās Audzēšanas Skola"

(founded 22.09.2006)

Lielvārdes str. 41, Rīga LV – 1006, Latvia ph/fax +37167553596

www.ias.lv

Krišjānis Valdemārs 1825 -1991

Krišjānis Valdemārs inspired us to open our School www.ias.lv

In 1864, as an official of the Ministry of Finance of Imperial Russia he invented and established the first Naval School/Ainazi for Latvians in Latvian language. 30 years later there was >3000 educated Latvian captains, steersmen and engineers with international experience who brought home not only money, but also knowledge from overseas.

Being student of Terbata University in 1855 / today Tartu Estonia, he put on his door "Krišjānis Valdemārs. Latvian".

This is historic note, for political freedom and independence of Latvia. After Terbata University he worked in St. Petersburg as state officer in the Ministry of Finance of Imperial Russia.

He was a publicist, a politician, a founder and spiritual, startegic leader of the New Latvian Movement together with K. Barons and J. Alunāns.

K. Valdemārs followers compared for Latvia the leader of the national movement with the church reformer Martin Luther, but his contribution to the maritime development of the Russian Empire with the contribution of Peter Ist.

"The most necessary is knowledge, later it attracts the necessary capital, as a magnet attracts the iron."

Krišjānis Valdemārs

Integrated Pest Management.

Six Steps of IPM:

- 1. Proper identification of pest
- 2. Learn pest and host life cycle and biology
- 3. Monitor environment for pest population
- 4. Establish threshold
- 5. Choose appropriate combination of management tactics* (see next page)
- 6. Evaluate results

Integrated Pest Management.

Six Tactics/ methods of IPM:

- 1. Cultural methods
- 2. Physical methods
- 3. Genetic methods
- 4. Biological methods
- 5. Chemical methods
- 6. Regulatory

Pests don't read and react to regulatory rules. We must think as pests, if we want to find solutions.

©LA

Integrated Pest Management.

Six steps/methods:

IPM follows a stepwise approach.

IPM typically uses several tactics to dealing with the pest to reach the effective result.

Chemical method is used only after first three methods and less toxic products are used first.

The advantages of IPM - efficacy, cost and safety.

Build measurable objectives for each of those goals into practical solution plan from the beginning.

Integrated Pest Management. Whay it is not working always?

• Knowledge is a missing element to be successful with IPM.

(mentioned in many presentations!)

- It does not mean that knowledge is missing in EU. EU has the best knowledge word wide.
- For success there must be multidisciplinary interaction.
- EMPHASIS is a good example how it can be done.

IPM for seedling insects in winter and spring oilseed rape production.

EMPHASIS. Seedling insect IPM control [Oilseed rape] while preserving honey bees populations.

continuity of science and knowledge transfer in EU

Integrētās Audzēšanas Skola/IAS (Latvia)
Fera Science Limited/FERA (UK)
National Institute of Agricultural Botany/NIAB (UK)
European and Mediterranean
Plant Protection Organization /EPPO (France)

IPM for seedling insects in winter and spring oilseed rape production.

EU /2014-2017/ after ban

- many additional millions spend in EU for foliar OSR insecticide application
- 912,000 tons of missing OSR harvest in EU per year*
- Significant fall of OSR production across Europe has resulted with obvious losses to farming and food businesses, and the need to import crop from outside the EU, where oilseed rape is produced using neonicotinoids*

* from the HFFA Research/ Germany report.

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

emphasisproject.eu

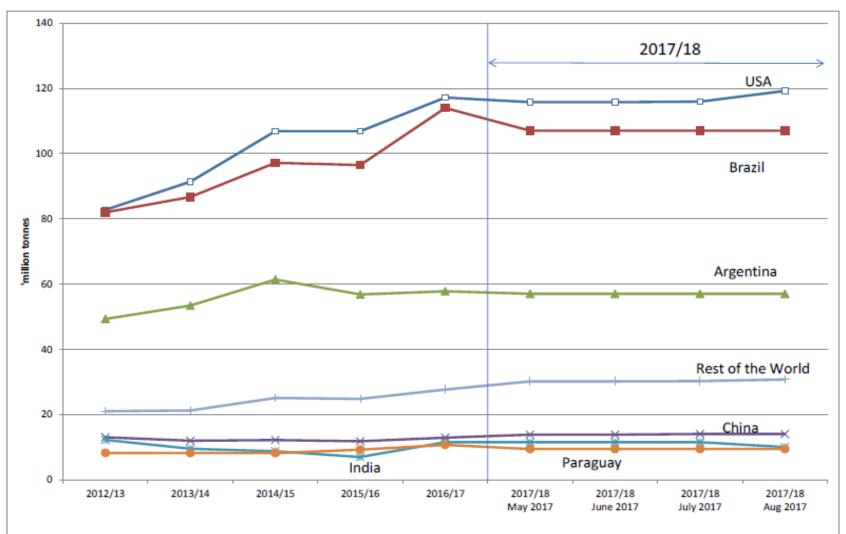
WASHINGTON, D.C. 20460

OCT 1 5 2014

OFFICE OF CHEMICAL SAFETY AND POLLUTION PREVENTION

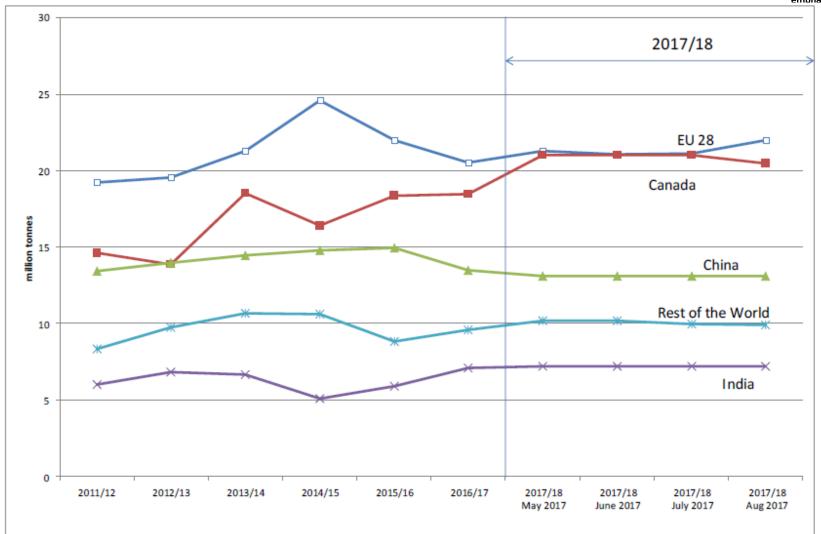
MEMORANDUM

SUBJECT: Benefits of Neonicotinoid Seed Treatments to Soybean Production


2014 United States Honey Production Up 19 Percent

Posted On: March 20, 2015

Soybeans production by country

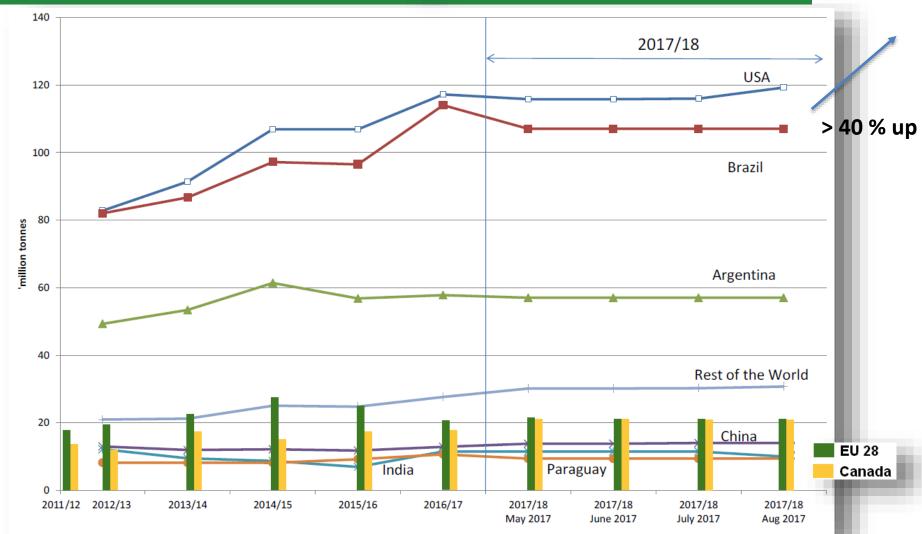


Presentation: Committee for the Common Organisation of Agricultural Markets /24 August 2017

EPPO, Berlin, 2017-09-20/22_I. Gaile, G. Gulbis / Integrētās Audzēša European Commission Department: Agriculture and Rural Development

Rapeseed production by country

Presentation: Committee for the Common Organisation of Agricultural Markets /24 August 2017


European Commission Department: Agriculture and Rural Development

Gulbis / Integrētās Audzēšanas Skola www.ias.lv

Soybeans and Rapeseed production by countries

From presentation: Committee for the Common Organisation of Agricultural Markets /24 August 2017 European Commission Department: Agriculture and Rural Development

IPM for seedling insects in winter and spring oilseed rape production.

Bee health page

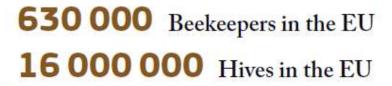
Paragraph 4.Over the past 10 to 15 years, beekeepers have been reporting unusual weakening of bee numbers and colony losses, particularly in Western European countries including France, Belgium, Switzerland, Germany, the UK, the Netherlands, Italy, Zonal registration! North EU?

Paragraph <u>5.No single cause of declining bee numbers has been identified</u>. However, several possible contributing factors have been suggested, acting in combination or separately.

These include the effects of intensive agriculture and pesticide use, starvation and poor bee nutrition, viruses, attacks by pathogens and invasive species – such as the Varroa mite (*Varroa destructor*), the Asian hornet (*Vespa velutina*), and the small hive beetle *Aethina tumida* and environmental changes (e.g. habitat fragmentation and loss).

Honey bees page

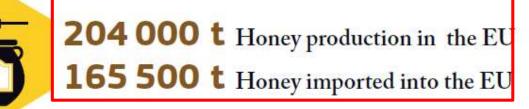
Paragraph 3. Veterinarians and beekeepers should follow certain rules when applying <u>veterinary medicines</u> to bee colonies. There are also special requirements for <u>trade and import of live bees</u>.



Bee health, 2015

Fast facts

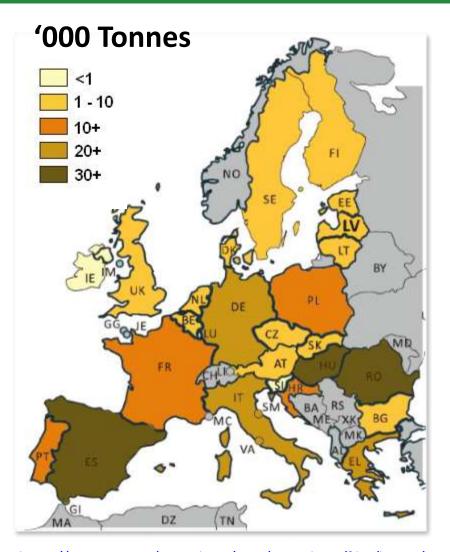
1 884 wild bee species in the EU


domestic bee species (Apis mellifera)

Average number of medicines authorised per EU Member State bees = 3 pigs = 426 dogs = 592

33 100 000 €/year

EU co-financing for beekeeping


created by European Commission

https://ec.europa.eu/food/sites/food/files/animals/docs/la bees infograph bee-health 201507.pdf

Honey Production EU ('000 Tonnes) 2015

Honey Production EU:

> 80 % in 6 countries

Romania

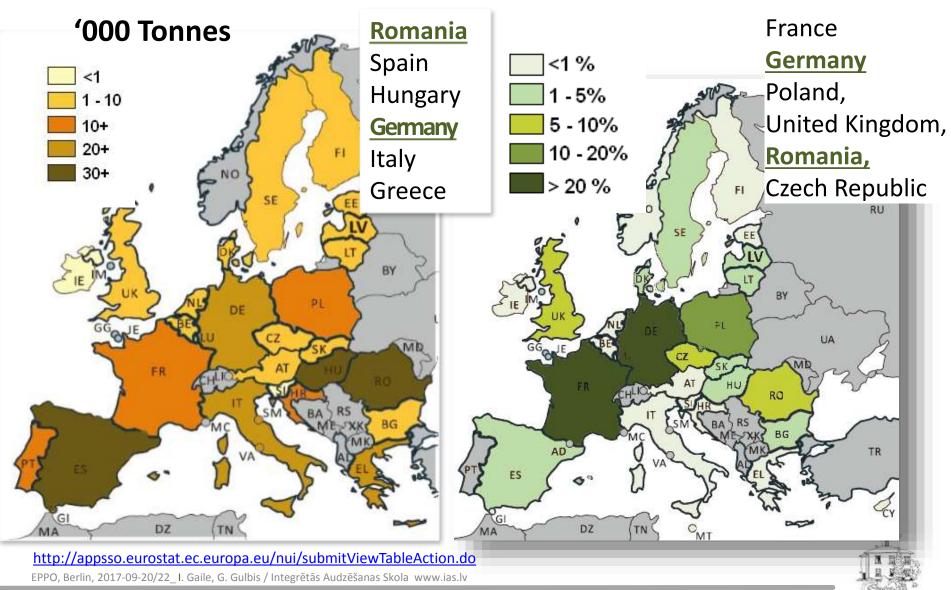
Spain

Hungary

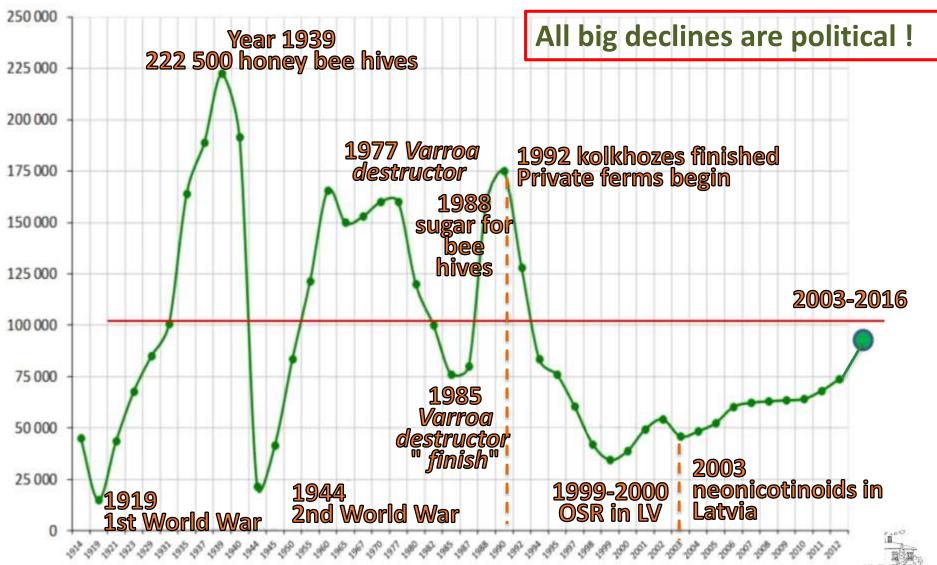
Germany

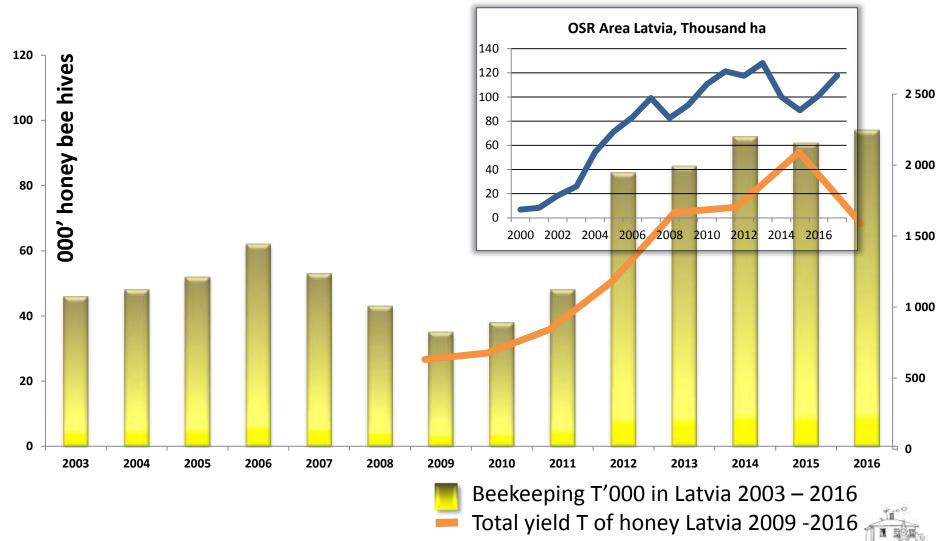
Italy

Greece


https://ec.europa.eu/agriculture/sites/agriculture/files/honey/presentation-honey-2015_en.pdf

EPPO, Berlin, 2017-09-20/22_I. Gaile, G. Gulbis / Integrētās Audzēšanas Skola www.ias.lv

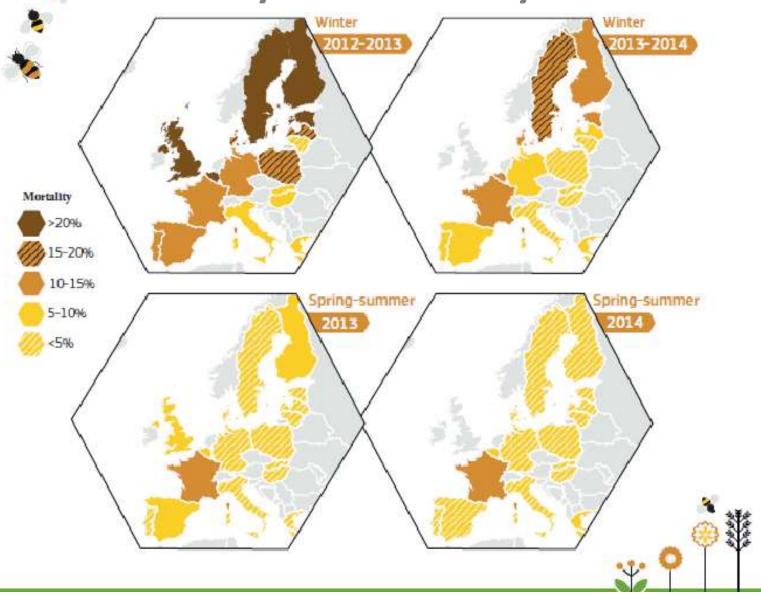

Honey Production EU ('000 T) OSR area % EU


Beekeeping in Latvia 20th and 21st century

Beekeeping in Latvia 2003 – 2016 Total yield of honey in Latvia 2009 -2016

Latvia 2016

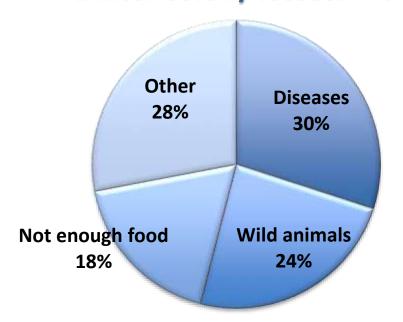
Nectar sources for honey bees %*



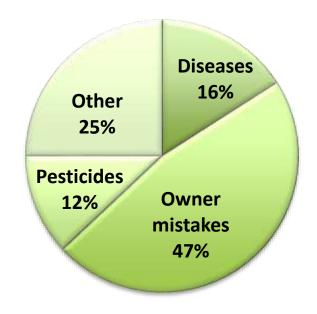
*From Latvia beekeeper survey 2016

OSR are < than 20 % of honey sources in Latvia

Mortality rate for honey bees EU

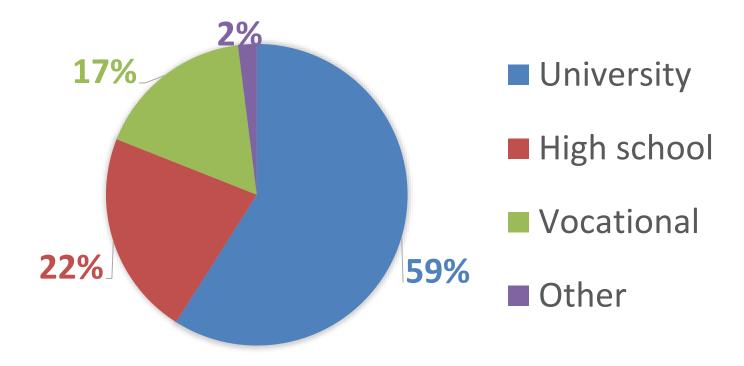


https://ec.europa.eu/food/sites/food/files/animals/docs/la bees infograph bee-health 201507.pdf


Monitor Honey Bee Colony Losses (mortality) 2017 – Latvia Data from COLOSS survey

winter colony losses: 14%

summer colony losses: 6,25%


492 respondents - 16,7 % from beekeepers; (Latvia total: 95 773 bee hives)

Monitor Honey Bee Colony Losses (mortality) 2017 – Latvia Data from COLOSS survey

EDUCATION of respondents

492 respondents - 16,7 % from beekeepers; (Latvia total: 95 773 bee hives)

Mortality of honey bees is

In the

warmer

weather

bees are

honey,

staying

off as

not dying

quickly in

the cold.

natural process

10 - 20% in winter

5-10 % in summer

South EU < North EU

Warmer November & Less Dead Bees

Latvia January 2016, temperature -20° C

People who idealize and romanticize beekeeping — I would guess that's 99% of all people who have ever gotten into beekeeping, including me — are in for a big wake up call after they kill their first colony. April 8, 2016 (beekeeper from 2010).

EPPO, Berlin, 2017-09-20/22 I. Gaile, G. Gulbis / Integrētās Audzēšanas Skola www.ias.lv

Honey bees page

3. Veterinarians and beekeepers ... There are also special requirements for <u>trade and import of live bees</u>.

No other mortality for honey bees as natural

No other mortality for honey bees as natural

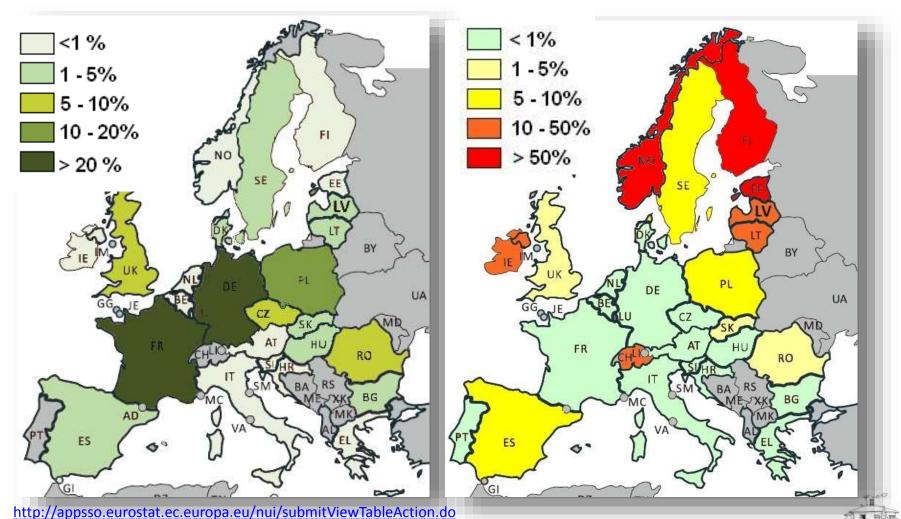
Latvia 2017

> 800 ha farm in Bauska region. In very intensive agriculture part — Zemgale.

OSR for 15 years (winter and spring), on average OSR is 1/5 from total area.

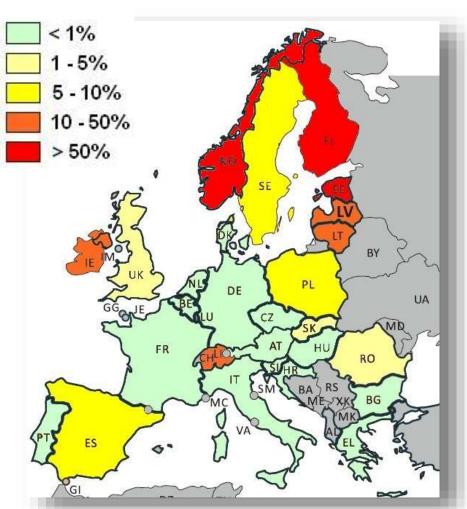
All years before ban - OSR treated with Neonicotinoids. Farmer/Beekeeper Janis (43 years old, got bees from his father), said that he never bought bee queens, because the number and activity of swarms is good.

Only local bees for > 40 years!!!


Health of hives represent environment in intensive agriculture with OSR, and it is one of IPM indicators.

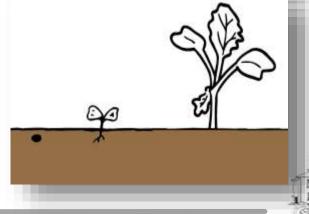
OSR in EU 2017

Winter oilseed rape area of total OSR ha EU Spring OSR area from total OSR in country


EPPO, Berlin, 2017-09-20/22_I. Gaile, G. Gulbis / Integrētās Audzēšanas Skola www.ias.lv

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 634179 20.-22.09.2017

North Europe - spring OSR main seedling insect *Phyllotreta spp.*



Spring OSR area from total OSR in country

- 1. Finland
- 2. Estonia
- 3. Poland
 - 4. Latvia
- 5. Lithuania
 - 6. Sweden

EPPO, Berlin, 2017-09-20/22 I. Gaile, G. Gulbis / Integrētās Audzēšanas Skola www.ias.lv

Main rapeseed seedling insects EU 2017

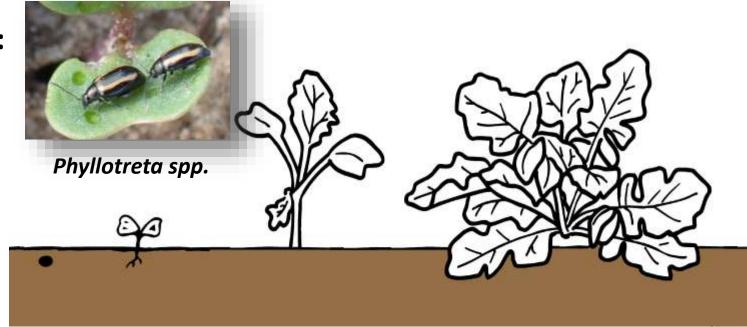
Winter OSR:

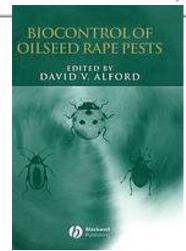
Psylliodes chrysocephala

Delia radicum

*Myzus persicae*TuYV transmission

Spring OSR:




Table 2.2 Relative importance of the main pests of oilseed rape in Europe.

1997	-1999
------	-------

Pest	Main OSR insects in EU countries	Winter rape	Spring rape
Baris	weevils	- [Note 1]	×
brassi	ca pod midge (Dasineura brassicae)	+	+
	ge aphid (Brevicoryne brassicae)	(+)†	(+)
	ge flea beetles (Phyllotreta spp.)	2	(+)
	ge root fly (Delia radicum)	-	(+)
	ge seed weevil (Ceutorhynchus assimilis)	+	+
cabba	ge stem flea beetle (Psylliodes chrysocephala)	+	×
cabba	ge stem weevil (Ceutorhynchus pallidactylus)	(+)	(+)
	/potato aphid (Myzus persicae)	t	<u> </u>
	beetles (Meligethes spp.)	+ [Note 2]	+
rape s	stem weevil (Ceutorhynchus napi)	+	×
	vinter stem weevil (Ceutorhynchus picitarsis)	(+)	×
	sawfly (Athalia rosae)	-	(+)

- Often damaging in areas where it occurs.
- (+) Occasionally or locally damaging.
- Present but of little or no importance.
- † Potentially important as a virus vector.
- Not present.
- Note 1. Recorded mainly in France.
- Note 2. Rarely of significance on winter oilseed rape in the UK.

EC- founded project BORIS

Main OSR seedling insects in EU countries 1997-1999

Relative importance of the main pests of oilseed rape in Europe

Pest	Spring OSR	Winter OSR
Phyllotreta spp. (cabbage flea beetles)	(+)	-
Delia radicum (cabbage root fly)	(+)	-
Psylliodes chrysocephala (cabbage stem flea beetle)	X	+
Myzus persicae /TuYV transmission	-	+

EC- founded project BORIS

- + Often damaging in area where it occurs
- (+) Occasionally or locally damaging
- Present put of little or no importance
- **†** Potentially importance as a virus vector
- x not present

Main OSR seedling insects in EU countries 2015-2017

Relative importance of the main pests of oilseed rape in Europe

Pest	Spring OSR	Winter OSR
Phyllotreta spp. (cabbage flea beetles)	++	(+)
Delia radicum (cabbage root fly)	(+)	++
Psylliodes chrysocephala (cabbage stem flea beetle)	X	++
Myzus persicae /TuYV transmission	-	+

20 years later!

- ++ Damaging, up to a complete loss of the crop
- + Often damaging in area where it occurs
- (+) Occasionally or locally damaging
- Present put of little or no importance
- † Potentially importance as a virus vector
- x not present

EPPO, Berlin, 2017-09-20/22_ I. Gaile, G. Gulbis / Integrētās Audzēšanas Skola www.ias.lv

Main OSR seedling insects in EU countries 2015 -2017

Neonicotinoid seed treatment in OSR were covering all EU main seedling insect problems

Country	Spring OSR	Winter OSR
Germany	< 1% from rapeseed	Delia radicum (cabbage root fly) different crop loss can result up to a complete loss of the crop. Psylliodes chrysocephala (cabbage stem flea beetle), Myzus persicae /TuYV transmission
UK	< 1% from rapeseed	Psylliodes chrysocephala (cabbage stem flea beetle) different crop loss can result up to a complete loss of the crop. Myzus persicae /TuYV transmission Delia radicum (cabbage root fly)
Latvia Estonia	Phyllotreta spp. (flea beetles) (P.undulata, P.nemorum, P.atra, P.nigripes and others) different crop loss can result up to a complete loss of the crop.	Agriotes spp. (wireworms) Phyllotreta spp. (flea beetles) New in 2017 Psylliodes chrysocephala (cabbage stem flea beetle)
Finland	Phyllotreta undulata (flea beetles) different crop loss can result up to a complete loss of the crop.	< % from rapeseed

Latvia 2015 spring oilseed rape

Vasaras rapša šķirņu izmēģinājums

	Legalos	Brando	Majong	Mosaik	Lennon	Clipper	Stella	Silver Shadow	Achat	Trapper	Kaliber
--	---------	--------	--------	--------	--------	---------	--------	---------------	-------	---------	---------

SW Seed

Baltic Agro

Herbicīds – Butizāns Kombi 2,5 l/ha (pēc sējas) 05.05.

Fungicīds - Cantus Gold 0,5 kg/ha (BBCH 51-65) 25.06.

Insekticīdi - Karate Zeon 0,15 l/ha 12.05., 29.05.

Fastac 0,3 l/ha 25.05., 09.06.

Plenums 0,15 kg/ha 15.06.

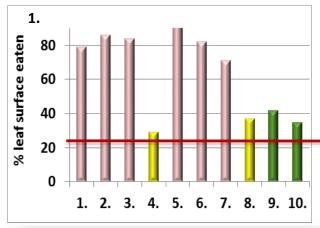
Biscaya 0,3 l/ha 25.06.

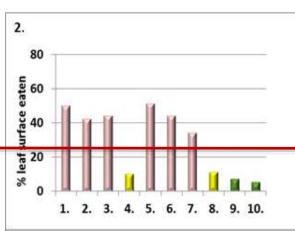
Pamatmēslojums - Yara Mila NPK (S) 18-8-16 (8) 300 kg/ha

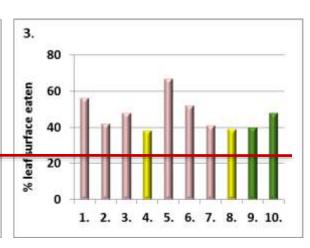
Papildmēslojums – Yara Bela Axan NS 27-4 (N 100 kg/ha)

Lapu mēslojums - Yara Vita Brasitrel Pro 3,0 l/ha 15.06.

4 sprays
2x lambda-cyhalothrin
2x alfa-cypermetrine
to control
Phyllotreta
spp.!!!


Before - just one seed treatment


(thiamethoxam or imidocloprid)



Seedling insects in spring oilseed rape production. Latvia 2016-2017

Charts. 3 trials in 2016. 3rd evaluation.

Leaf surface eaten damage % spring oilseed rape by *Phyllotreta spp.*. Evaluation of damage in **% exceeding scale** in EPPO standard PP 1/218 (1):

1=no damage, 5=>25 % leaf area eaten.

Photos. From 1 trial, 1st evaluation.

non-treated controls (1.5); with foliar spray 1x (2.6), foliar spray 2x (3.7) seed treatment variants (4.8.9.10).

Seedling insects in spring oilseed rape production in Europa 2016-2017 results

Seed treatment 2x foliar spray Control

Scale to be used for evaluation of damage by Phyllotreta spp. in spring OSR

emphasisproject.eu

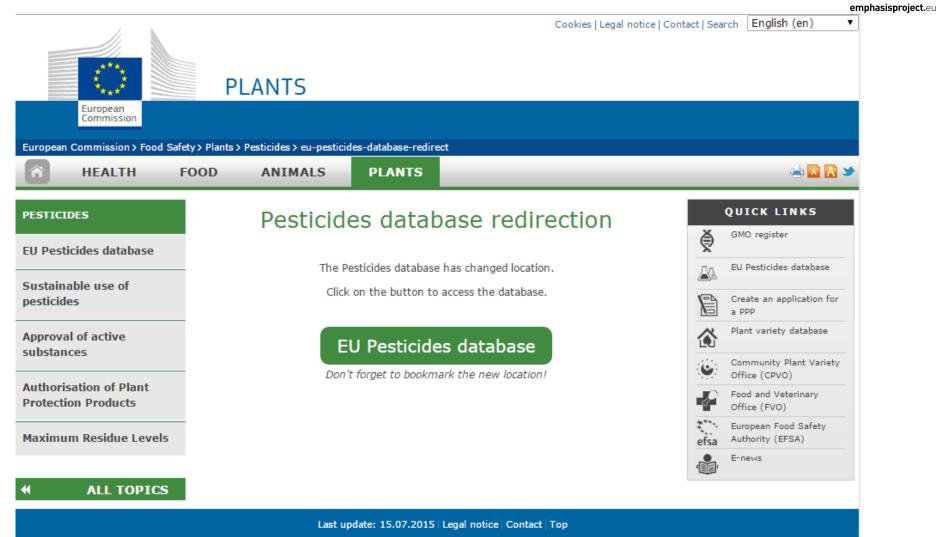
	EPPO*	Pro	posal to EPPO**	Comments
1	no damage	1	no damage	
2	up to 2 % leaf area eaten	2	up to 2 % leaf area eaten	Q 🖟
3	3 -10 % leaf area eaten	3	3 -10 % leaf area eaten	
4	10-25 % leaf area eaten	4	10-25 % leaf area eaten	A/s
5		5	25 % - 50 % leaf area eaten	R/A
5	>25 % leaf area eaten	6	50 % - 70 % leaf area eaten	Plants < 50%
5		7	75% - 100 % leaf area eaten	No Plants

* EPPO standart PP 1/218 (1) *Phyllotreta spp* Using Appendix I scale.

**proposal to update EPPO 1/218 (1)

USA/EPA's Proposal to Mitigate Exposure to Bees from Acutely Toxic Pesticide Products

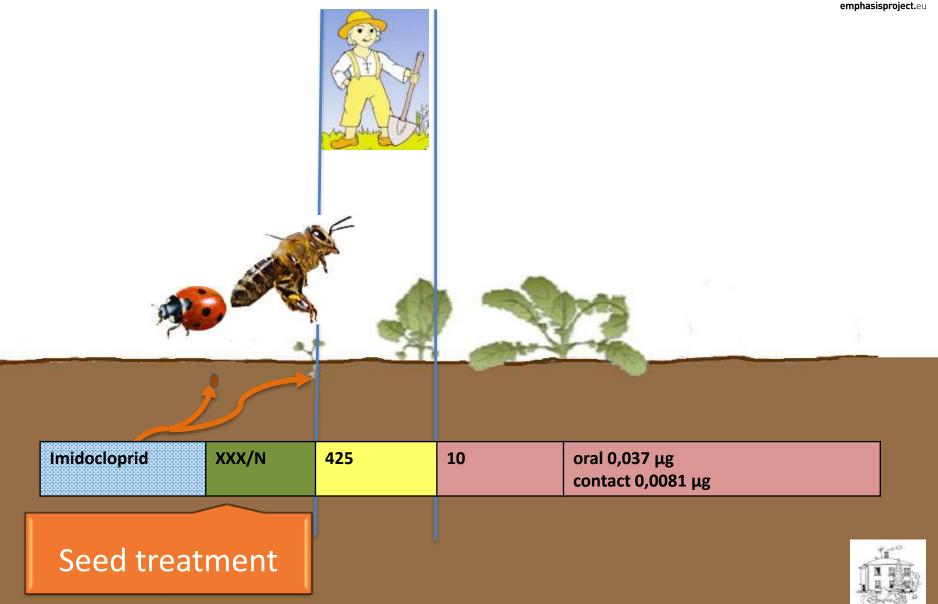
May 28, 2015


SUMMARY

As discussed in this paper and consistent with previous actions by the EPA and the Strategy, EPA is proposing additional restrictions for pesticide applications to blooming crops where managed bees are present under a contract, for pesticides that are acutely toxic to bees (i.e., those chemicals with an <u>acute contact LD₅₀<11µg/bee)</u> all a.i. in Appendix A

Toxicity of products a.i. for control of OSR seedling insects.

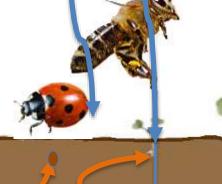
http://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/public/?event=homepage&language=EN


Efficacy to OSR seedling insects. Toxicity of products, a.i.

	_				
Active indegrient Acute toxicity	Efficacy/ Resistance	Rat/Mammal LD ₅₀ oral mg/kg bw	Earthworms LC ₅₀ mg a.i./kg soil	Honeybees Oral LD ₅₀ μg a.s./bee Contact LD ₅₀ a.s./bee	emphasisproject.6
Alpha- cypermethrin	x /?	57	>100	oral 0,059 μg contact 0,033 μg	_
Deltamethrin	x /?	87	> 1290	oral 0,079μg or 79 ng contact 0,0015 μg 1,5ng	x_en.htm
Lambda- cyhalothrin	x /?	56 (f) 79 (m)	> 1000	oral 0,91μg contact 0,038 μg	ety/inde
Pymetrozine	x/N	> 5000	> 250	oral > 117 μg , contact > 200 μg	od-saf
Spinosad	X /N	> 2000	>916	oral 0,057 μg (product) contact 0,0036 μg	nealth_fo
Thiacloprid	XX/N	> 500	105	oral 17,32 μg contact 38,82 μg	eu/dgs/ľ
Thiamethoxam	XXX/N	> 1563	>1000	oral 0,005 μg contact 0,024 μg	nttp://ec.europa.eu/dgs/health_food-safety/index_en.htm
Acetamiprid	XX/N	417 (m) 314 (f)	9	oral 14,53 μg contact 8,09 μg	http://ec
Clothianidin	XXX/N	500	13.21	oral 0.00379 μg contact 0.04426 μg	1, 12
Imidocloprid	XXX/N	425	10	oral 0,037 μg contact 0,0081 μg	N H H

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 634179

Efficacy to OSR seedling insects. Toxicity of products, a.i.

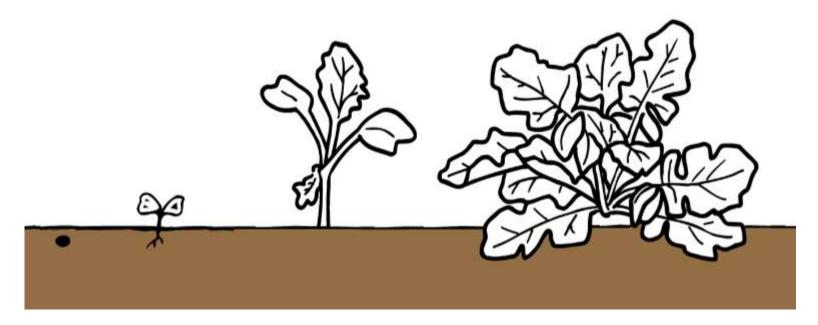

Efficacy to OSR seedling insects. Toxicity of products, a.i.

2 x foliar spray

Alpha- cypermethrin	x /?	57	>100	oral 0,059 μg contact 0,033 μg
Deltamethrin	x /?	87	> 1290	oral 0,079μg or 79 ng contact 0,0015 μg 1,5ng

Imidocloprid XXX/N	425	10	oral 0,037 μg
			contact 0,0081 μg

Seed treatment


Efficacy to OSR seedling insects. Toxicity of products, a.i. 4 x foliar sprays emphasisproject.eu 2 x foliar spray x /? Alpha-57 >100 oral 0,059 μg cypermethrin contact 0,033 µg Deltamethrin X /? 37 oral 0,079μg or 79 ng > 1290 contact 0,0015 µg 1,5ng **Thiamethoxam** XXX/N >1000 > 1563 contact 0 024 ug Seed treatment

Seedling insects OSR

Insect control by seed treatment BBCH 13 -16

IPM

protection of plant from seed germination to ≈ 3 - 6 leaves

EU /2014-2017/ after prohibition of NEONIC

- 2-7 times more sprays <u>for farmer/operator</u> with insecticides and for beneficial!
- many additional millions spend in EU for foliar OSR insecticide application
- 912,000 tons of missing OSR harvest in EU per year*
- Significant fall of OSR production across Europe has resulted with obvious losses to farming and food businesses, and the need to import crop from outside the EU, where oilseed rape is produced using neonicotinoids*
- 44 % honey imported from outside the EU, where oilseed rape and other crops (soybeans, maize, sunflower and other crops) are produced using neonicotinoids

EPPO, Berlin, 2017-09-20/22 I. Gaile, G. Gulbis / Integrētās Audzēšanas Skola www.ias.lv

Conclusions

- Multidisciplinary stakeholder interaction must be established for OSR growers and beekeepers!!!
 "Honey in office" or bees and OSR in one farm"!
- We should stop spreading myths about OSR seed treatment.
- Zonal registration/Zonal prohibition. Minor uses.
 Emergency authorization. Country specific IPM.
- Bees and Oilseed rape are Both strategically important part of EU agriculture, biodiversity and sustainability.
 Grows of these sectors are related with effective IPM of OSR seedling insects as seed treatment!

EMPHASIS project Deliverables.

Guidelines for seedling insects containment in Oilseed rape (2018/2019)

Practical guide for oilseed rape producers to manage seedling insects while preserving honey bees populations.

Thank You All!

Latvian: Bites! English: Bees!

