The application of Next Generation Sequencing technology for the detection and diagnosis of nonculturable organisms – an Australian perspective.

Brendan Rodoni¹, Roberto Barrero², Lisa Ward⁴, Fiona Constable¹, Wycliff Kinoti¹, Rachel Mann¹ and Mark Whattam³

¹AgriBio, La Trobe University, Agriculture Victoria Research, Australia. ²Centre of Comparative Genomics, Murdoch University, Australia ³Department of Agriculture and Water Resources, Australia ⁴New Zealand Ministry of Primary Industry

PLANT BIOSECURITY

PREPAREDNESS, RESPONSE

Plant Biosecurity Facts:

 Plant Quarantine is based on the presence of the pathogen and not the disease

 Trade can be disrupted by the "presence of the pathogen"

Research: Next Generation Sequencing (NGS)

Melon necrotic spot virus (MNSV) "Suspect" to confirmation (8 days)

Candidatus Liberibacter brunswickensis' identified in the Australian eggplant psyllid

Candidatus Liberibacter brunswickensis' identified in the Australian eggplant psyllid

- A new species of *Ca*. Liberibacter has been detected in *A*. solanicola
- Plant disease associated with the presence of the bacteria has not been observed

Implication for Diagnostics of High Priority Pests associated with

- Citrus greening
- Zebra Chip

FALSE POSITIVES!!!!!!

- *Candidatus* Liberibacter brunswickensis (CLbr)
- First detection of a *Ca*. Liberibacter species in mainland Australia and from the psyllid genus *Acizzia*

	CLaf HLBa f Li et al,. 2006	CLas HLBa S Li et al,. 2006	CLa m HLBa m Li et al,. 2006	CLSO LSOF Li et al,. 2009
CLaf	+	-	-	-
CLas	-	+	-	-
CLam	-	-	+	-
CLso	-	-	-	+
CLbr	+	+	-	-

+ false positive!!!!

Morris et al., 2017, Microbial Biotechnology

Surveillance and diagnosis of viruses and viroids using a small RNA next generation sequencing approach

An internet-based bioinformatics toolkit for Plant Biosecurity diagnosis and surveillance of viruses and viroids

Roberto Barrero¹, Mark Whattam² & Lisa Ward³

¹Centre of Comparative Genomics, Murdoch University, Australia ²Department of Agriculture and Water Resources, Australia ³New Zealand Ministry of Primary Industry

Plant Biosecurity Cooperative Research Centre

Diagnosis of viruses and viroids at PEQ

Background

- Approx. 500 high risk plants imported annually into Australia (stone/pome fruit, citrus, potato, berry crops, grapevine, etc).
- Current PEQ protocols are time and resource consuming:
 - Visual and biological indicators (herbaceous and woody indicators)
 - Transmission electron microscope (TEM)
 - Serological (ELISA)
 - Molecular (PCR)

Issues

- Spend 2+ years in PEQ, ambiguous, expensive and declining expertise
- Prolonged delays impact plant industries competitiveness and profitability

Solution

- Need a rapid and robust assay to accelerate quarantine screening
- Implemented **small RNA NGS** approach using specifically host immune response products (21-22 nt siRNAs) detects reliably all known viruses and viroids in a single assay (Barrero et al, 2017).

Overview of bioinfomatics workflows (YABI)

CRC PLANT biosecurity

PCR validation: Side-by-side comparisons

					PEQ				NGS			
Tube label	Project sample identifier	Host	Plant species	Virus	ELISA	S-PAGE Viroids	PCR	Biological indexing	YABI	NGS (VirusDetect)	Confirm	Result
C1	PB64-S093	Citrus	Citrus aurantifolia (Christm.) Swingl	e CVEV				✓	×	×		
C1	PB64-S093	Citrus	Citrus aurantifolia (Christm.) Swingle	e CEVd			×	×	×	\checkmark	PCR(-)	S
C1	PB64-S093	Citrus	Citrus aurantifolia (Christm.) Swingle	e CTV			\checkmark	\checkmark	\checkmark	✓	N/A	Е
C1	PB64-S093	Citrus	Citrus aurantifolia (Christm.) Swingle	e CVd-III			\checkmark	\checkmark	\checkmark	\checkmark	N/A	Е
C1	PB64-S093	Citrus	Citrus aurantifolia (Christm.) Swingle	e HSVd			\checkmark	\checkmark	\checkmark	\checkmark	N/A	Е
C2	PB64-S094	Citrus	Troyer citrange	CEVd		\checkmark	√	\checkmark	√	\checkmark	N/A	E
C2	PB64-S094	Citrus	Troyer citrange	CTV			×	×	×	\checkmark	PCR(-)	S
C2	PB64-S094	Citrus	Troyer citrange	CVd-IV		×	×	×	×	\checkmark	PCR(-)	S
C2	PB64-S094	Citrus	Troyer citrange	HSVd		×	×	×	×	\checkmark	PCR(-)	S
C3	PB64-S095	Citrus	Citrus medica L.	CEVd		×	×	×	×	\checkmark	PCR(-)	S
C3	PB64-S095	Citrus	Citrus medica L.	CTV			\checkmark	\checkmark	\checkmark	\checkmark	N/A	Е
СЗ	PB64-S095	Citrus	Citrus medica L.	HSVd		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	N/A	Е
C4	PB64-S096	Citrus	Rusk Citrange /Swingle Citrumello	CTLV	\checkmark		×	\checkmark	×	×	PCR(-)	Е
C4	PB64-S096	Citrus	Rusk Citrange /Swingle Citrumello	CEVd		×	×	×	×	\checkmark	PCR(-)	S
C4	PB64-S096	Citrus	Rusk Citrange /Swingle Citrumello	CitPRV				×	×	\checkmark	N/A	S
C4	PB64-S096	Citrus	Rusk Citrange /Swingle Citrumello	СТV	×		×	×	×	\checkmark	PCR(-)	S
C5	PB64-S097	Citrus	Citrus limon 'Eureka'	Crinkly leaf ilarvirus				✓	×	×		
C5	PB64-S097	Citrus	Citrus limon 'Eureka'	CEVd		×	×	×	×	\checkmark	PCR(-)	S
C5	PB64-S097	Citrus	Citrus limon 'Eureka'	СТV	×		×	×	×	\checkmark	PCR(-)	S
C5	PB64-S097	Citrus	Citrus limon 'Eureka'	HSVd		×	×	×	×	\checkmark	PCR(-)	S
C6	PB64-S098	Citrus	Citrus x sinensis	Citrus ringspot virus/ Psorosis B			×	~	×	×	PCR(-)	E
C6	PB64-S098	Citrus	Citrus x sinensis	CEVd			×	×	×	\checkmark	PCR(-)	S
C6	PB64-S098	Citrus	Citrus x sinensis	СТV			×	×	×	\checkmark	PCR(-)	S
C6	PB64-S098	Citrus	Citrus x sinensis	CVd-III			\checkmark	\checkmark	\checkmark	\checkmark	N/A	Е
C6	PB64-S098	Citrus	Citrus x sinensis	HSVd			\checkmark	\checkmark	\checkmark	\checkmark	N/A	Е
C7	PB64-S099	Citrus	Eureka, West Indian Lime	CEVd		×	×	×	×	✓	PCR(-)	S
C7	PB64-S099	Citrus	Eureka, West Indian Lime	CTV	\checkmark		\checkmark	\checkmark	\checkmark	✓	N/A	E
C7	PB64-S099	Citrus	Eureka, West Indian Lime	HSVd		×	×	×	×	✓	PCR(-)	S

Negative test

~

Positive test

- Not analysed further
- sus Suspicious test by PCR
- NT not tested
- E Equivalent all three match
- S Similar Conventional and YABI match
- D Different
- PCR(+/-) Follow up PCR test was positive or negative

(Barrero, Mackie et al., in preparation)

Amplicon Deep Sequencing to Determine Ilarvirus Species Diversity in Australian Prunus

- Wycliff Kinoti (PhD Candidate)
- NGS of
 - Species specific amplicons (e.g. PNRSV)
 - Genus-specific amplicons (e.g. llarvirus)

PNRSV genetic strains identified

Isolat RNA1 (MT e gene)		RNA2 (RdRp gene)	RNA3 (CP gene)		
K72	1	1	1		
M19	2	2	2		
Q15	2	1	3		

CRC PLANT biosecurity

Generic *Ilarvirus* (RNA2) detection

l sol ate	<i>Harvirus</i> generic amplicon NGS	Sanger sequencing of cloned <i>Harvirus</i> generic amplicon	RNA2 amplicon region species- specific RT-PCR	RNA1/3 species- specific RT- PCR	Metagenomic NGS
K75	ApMV	ApMV	ApMV	ApMV	ApMV full genome
NS9	PDV	PDV	PDV	PDV	PDV full genome
M32	PNRSV	PNRSV	PNRSV	PNRSV	PNRSV full genome
Pch4	PDV	Neg	PDV	PDV	PDV full genome
	PNRSV	Neg	PNRSV	PNRSV	PNRSV full genome
	Ilarvirus-S1	Ilarvirus-S1	Ilarvirus-S1	Neg	Neg
Q15	APLPV	APLPV	APLPV	APLPV	APLPV full genome
	PNRSV	Neg	PNRSV	PNRSV	PNRSV full genome
	Ilarvirus-S1	Neg	Ilarvirus-S1	Neg	Neg
BPch	Ilarvirus-S1	Ilarvirus-S1	Ilarvirus-S1	Neg	Neg
Ch1	Ilarvirus-S1	Ilarvirus-S1	Ilarvirus-S1	Neg	Neg
	Ilarvirus-S2	Ilarvirus-S2	Ilarvirus-S2	Neg	Neg
FPch	Ilarvirus-S1	Ilarvirus-S1	Ilarvirus-S1	Neg	Neg
Pch2	Ilarvirus-S1	Ilarvirus-S1	Ilarvirus-S1	Neg	Neg
Tas3	Ilarvirus-S1	Ilarvirus-S1	Ilarvirus-S1	Neg	Neg

biosecurity Kinoti, Wycliff M., et al. *Frontiers in Microbiology* 8 (2017)

Research: R&D4Profit - National Pest Surveillance

Diagnostic Surveillance Hub, 2017-2022 (5 year project - \$22mil)

Partnership between: AgVic, CSIRO, SARDI, WA DPIRD

Industries: Grains, Sugar, Cotton, Horticulture, Wine, Forestry

AgVic Role: Metabarcoding

Scope: Utilise molecular methods to detect specific plant pests (e.g. insects) and associated pathogens (e.g. spores / viruses) of concern, including surveillance for potential exotic pests.

Outputs: To develop and deliver new molecular approaches to surveillance, including NGS, for the detection of multiple pests and pathogens within trap samples.

Metabarcoding

Invertebrate Molecular Identification – Mosquitoes

Batovska, Lynch, Cogan, Brown, Darbro, Kho & Blacket (2017) *Ecology & Evolution*

National Plant Biosecurity Strategy

Subcommittee for Plant Health Diagnostics (SPHD)

- Facilitate the development of a diagnostic capability and capacity for all High Priority Pests
 - Develop and recommend national standard processes relating to plant pest diagnostics
 - Promote and facilitate the development of National Diagnostic Protocols (NDPs) for EPPs and endemic pests of national significance
- The National Plant Biosecurity Network (NBPDN) (<u>http://plantbiosecuritydiagnostics.net.au/</u>)
 - SPHD Reference Standard No. 2:
 - "Development of Diagnostic Protocols Instructions to Authors"
 - Based on the IPPC ISPM No 27 "Diagnostic protocols for Regulated Pests (IPPC 2006)"

Subcommittee for Plant Health Diagnostics (SPHD)

Plant Health Quads 0035 - Diagnostic Tools Collaboration (2008 -)

Geoff Dennis, Patrick Shiel (USA), Mark Nakhla, Laurene Levy (USA); Pam Rose, Thomas Niederberger (Canada); Lia Liefting, Lisa Ward (New Zealand); Brendan Rodoni, Mike Hodda (Australia)

Quads Working group: "Managing regulatory issues arising from new diagnostic technology"

Benedicte Lebas, Rose Souza-Richards (NZ MPI); Anna-Mary Schmidt, Sarah Brearey (CFIA Canada); Shailaja Rabindran, Gloria Abad (USDA); Brendan Rodoni (Australia)

CRC PLANT biosecurity

Plant Health Quads 0035 - Diagnostic Tools Collaboration (2008 -)

- Generate a guidance paper on NGS and its application in a diagnostic Laboratory
 - Identify critical control points (CCP) involved in generating NGS data
 - Sampling
 - Nucleic acid extraction
 - Sequence library preperation
 - Sequencing
 - Bioinformatics (data analysis)
 - Formulate guidelines and standards (policy) for each CCP
- A framework for a position paper on NGS and its application in a diagnostic laboratory has been generated. The position paper will be completed in 2018.
- Webinars and seminars from each member country on the application of NGS as a diagnostic tool have been presented to the working group.

Quads position papers related to NGS

Next Generation Sequencing: "Laboratory best Practice" Sampling guidelines generated and Nucleic acid extraction aligned with "Instruction Issues/challenges for Next Generation Sequencing for the detection and diagnosis of non-culturable organisms: Baseline data required at Critical Control Points: Accuracy Sensitivity Reproducibility Minimum requirements to make a diagnosis on NGS data **Provisional Taxonomic Assignment**

Taxonomic Assignment:

CRC PLANT biosecurity

Acknowledgments

- Matthew Bellgard
- Kathryn Napier
- Adam Hunter
- Tamas Szabo

- Simon Bulman
- Sandi Keenan
- Rebekah Frampton
- Arnaud Blouin

Australian Government

Department of Agriculture and Water Resources

- Mark Whattam
- James Cunnington
- Adrian Drinsdale
- Joanne Mackie

- Lisa Ward
- Lia Liefting
- Subuhi Khan

biosecurity built on science

- Michael Robinson
- Jo Luck
- Carla Tadich

CPLANTbiosecurity

