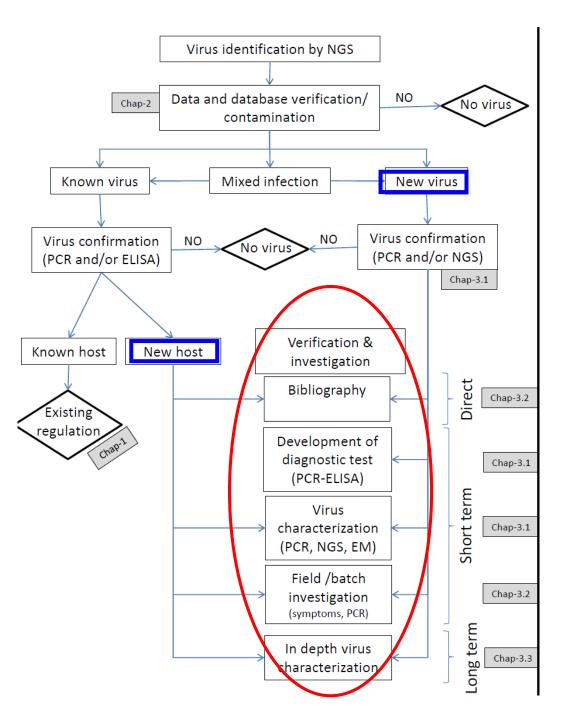


Framework for the evaluation of biosecurity, commercial, regulatory and scientific impacts of plant viruses and viroids identified by NGS technologies.

Sebastien Massart, Thierry Candresse, José Gil, Christophe Lacomme, Lukas Predajna, Maja Ravnikar, Jean-Sébastien Reynard, Artemis Rumbou, Pasquale Saldarelli, Dijana Škorić, Eeva Vainio, Jari P.T. Valkonen, Hervé Vanderschuren, Christina Varveri and Thierry Wetzel

I. CURRENT SITUATION FOR EXISTING VIRUSES II. EMERGING CHALLENGES FOR SCIENTISTS AND AUTHORITIES III. EARLY STEPS OF BIOLOGICAL CHARACTERIZATION IV. IN-DEPTH BIOLOGICAL CHARACTERIZATION

CONCLUSION



I. CURRENT SITUATION FOR EXISTING VIRUSES

In Europe: EPPO guideline

II. Emerging challenges for scientists and authorities

Previously:

Symptoms => investigations => detection of virus => EPPO

Now:

NGS: inverted approach on diagnostic: Detection of virus (symptomatic or asymptomatic plants) => investigations ???

II. Emerging challenges for scientists and authorities

=> QUESTIONS

Is every virus a threat ? Or natural symbionts in the ecosystems ? Actions to take with new sequences in terms of plant health ? Impact on Regulations ? Quarantine ? Import/export ?

=> Guidelines proposals needed

if we challenge the dogma that all viruses are pathogens

Important to understand the biology of any new virus identified

>> basis to the evaluation of the risk and to scientifically-based decisions

6 categories of information needed

- 1. Identity of a pest
- 2. Data on its distribution
- 3. Host range
- 4. Modes of spread
- 5. the local agro-environmental conditions
- 6. the ability to cause a disease

PROBLEMS / LIMITATIONS OF NGS

The main biases in NGS-based virus diagnostics are:

- * biological
- * technical
- * bioinformatic

- Biological issues:

contaminations (mycoviruses, etc...) integrated sequences in the genome of the host

- Technical issues:

contaminations in the lab (nucleic acid extractions, amplified DNA etc...) contaminations through the previous run...

- Informatic issues:

close viruses > obtention of chimeric sequences
conserved sequences > specificity of blast detection
new virus > no such viral sequence in databases > no results

European Cooperation in Science and Technology

NGS results

First multi BLAST : matches found > 900 sequences

Query	Number of hits	Lowest E-value	Accession (E- value)	Description (E- value)	Greatest identity %	Accession (identity %)	Description (identity %)	Greatest positive %	Accession (positive %)	Description (positive %)	Greatest hit length	Accession (hit length)	Description (hit length)	Greatest bit score	Accession (bit score)	Description (bit score)	
Small RNAs contig 1	421	1 2,73953E-5	9 HQ834962	Arabis mosaic virus isolate DU13 segment RNA2 polyproteir P2 gene, complete cds	98,9247312	HQ834962	Arabis mosaic virus isolate DU13 segment RNA2 polyproteir P2 gene, complete cds) HQ834962	Arabis mosaic virus isolate DU13 segment RNA2 polyproteir P2 gene, complete cds		79 HQ834962	Arabis mosaic virus isolate DU13 segment RNA2 polyprotein P2 gene, complete cds		. HQ834962	Arabis mosaic virus isolate DU13 segment RNA2 polyprotein P2 gene, complete cds	
Small RNAs contig 2	122	2 2,3203	6 FJ977568	Avian metapneumoviru s strain aMPV/MN/turke y/2a/97, complete genome		JN941974	Sugarcane streak mosaic virus isolate CBV2000V59 HC- Pro protein gene, partial cds) JN941974	Sugarcane streak mosaic virus isolate CBV2000V59 HC- Pro protein gene, partial cds		35 KF208813	HIV-1 isolate 100378_200 fron South Africa gag protein (gag) gene, complete cds		i FJ977568	Avian metapneumoviru s strain aMPV/MN/turke y/2a/97, complete genome	
Small RNAs contig 3	89	9 0,12635	8 DQ198083	Ovine herpesvirus 2, complete genome	71,4285714	AM420293	Saccharopolyspo a erythraea NRRL2338 complete genome	78,5714286	JF797217	Suid herpesvirus 1 strain Bartha, complete genome		83 JF937105	Mycobacterium phage Rey, complete genome	39,556	DQ198083	Ovine herpesvirus 2, complete genome	
Small RNAs	1	1 7.859	6 KF025499	Porcine bocavirus 3 isolate IA159-4 VP1/VP2 gene, complete cds		KF025499	Porcine bocavirus 3 isolate IA159-4 VP1/VP2 gene, complete cds		KF025499	Porcine bocavirus 3 isolate IA159-4 VP1/VP2 gene, complete cds		54 KF025499	Porcine bocaviru: 3 isolate IA159-4 VP1/VP2 gene, complete cds		KF025499	Porcine bocavirus 3 isolate IA159-4 VP1/VP2 gene, complete cds	
Small RNAs contig 6	-	3 0.45734	8 EF710637	Cotesia sesamiae Mombasa bracovirus clone BAC 1J4, complete sequence	51,6129032	EF710637	Cotesia sesamiae Mombasa bracovirus clone BAC 1J4, complete sequence	67,7419355	EF710637	Cotesia sesamiae Mombasa bracovirus clone BAC 1J4, complete sequence		93 EF710637	Cotesia sesamiae Mombasa bracovirus clone BAC 1J4, complete sequence		6 EF710637	Cotesia sesamiae Mombasa bracovirus clone BAC 1J4, complete sequence	
Small RNAs contig 7	295			Arabis mosaic virus isolate NW segment RNA2 polyprotein 2 gene, complete cds		KC138733	Arabis mosaic virus isolate NW segment RNA2 polyprotein 2 gene, complete cds		0 KC138733	Arabis mosaic virus isolate NW segment RNA2 polyprotein 2 gene, complete cds		50 KC138733	Arabis mosaic virus isolate NW segment RNA2 polyprotein 2 gene, complete cds		8 KC138733	Arabis mosaic virus isolate NW segment RNA2 polyprotein 2 gene, complete cds	
Small RNAs contig 8	7	7 0,36045	2 EU782025	Avian paramyxovirus 3 strain turkey/Wisconsin /68, complete genome	54,1666667	AJ630128	Bacteriophage S- PM2 complete genome	69,2307692	EU782025	Avian paramyxovirus 3 strain turkey/Wisconsir /68, complete genome		05 AM420293	Saccharopolyspo a erythraea NRRL2338 complete genome		EU782025	Avian paramyxovirus 3 strain turkey/Wisconsin /68, complete genome	

- Informatic issues:

European Cooperation in Science and Technology

Set parameters: number of hits / E-value / viral sequences

Arabis mosaic virus isolate NW segment RNA2 polyprotein 2 gene Arabis mosaic virus isolate DU13 segment RNA2 polyprotein P2 gene Grapevine fanleaf virus Grapevine deformation virus Grapevine Pinot gris virus Grapevine Rulgarian latent virus segment 1, isolate Serb1 Chilli veinal mottle virus isolate YN-tobacco Petunia x hybrida clone 3 integrated petunia clearing vein virus

> Number of hits >100 E-value < 3 (statistical value that gives an idea of the similarity of the sequence to the reference) Viruses only

- Informatic issues:

European Cooperation in Science and Technology

Set parameters: number of hits / E-value / viral sequences

Arabis mosaic virus isolate NW segment RNA2 polyprotein 2 gene Arabis mosaic virus isolate DU13 segment RNA2 polyprotein P2 gene Grapevine fanleaf virus Grapevine deformation virus Grapevine Pinot gris virus Grapevine rupestris stem pitting virus Grapevine Bulgarian latent virus segment 1, isolate Serb1 Chilli veinal mottle virus isolate YN-tobacco Petunia x hybrida clone 3 integrated petunia clearing vein virus

Ovine herpesvirus 2 Porcine cytomegalovirus strain BJ09 HIV-1

...

Number of hits >100 E-value < 3 (statistical value that gives an idea of the similarity of the sequence to the reference) Viruses only

III. EARLY STEPS OF BIOLOGICAL CHARACTERIZATION OF NEW VIRUSES

III. EARLY STEPS OF BIOLOGICAL CHARACTERIZATION OF NEW VIRUSES

4.1 Confirmation of virus detection

4.2 Provisional taxonomic assignation

Virus family / genus => preliminary information => Plant virus Risk of integrated sequence ? Confirmation of particles

4.3 Bibliography

4.4 Sample documentation

Symptoms, location, surrounding crops, ...

4.5 Full genome sequencing and annotation

4.6 Development of a diagnostic protocol

4.7 Field/batch observation

IV. IN-DEPTH BIOLOGICAL CHARACTERIZATION

Classical / molecular virology

TO IDENTIFY THE CAUSATIVE AGENT OF A PARTICULAR DISEASE:

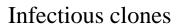
Robert Koch >> Four criteria (Koch postulate):

- the microorganism or other pathogen must be **present in all cases of the disease**

- the pathogen can be isolated from the diseased host and grown in pure culture (purified from its host)

- the pathogen from the pure culture must cause the disease when inoculated into a healthy, susceptible laboratory animal (plant)

- the pathogen must be **reisolated** from the new host and **shown to be the same** as the originally inoculated pathogen



Science and Technology

European Cooperation in IV. IN-DEPTH BIOLOGICAL CHARACTERIZATION

Koch postulate => Infectious clones

Symptoms / systemic infection

Science and Technology

European Cooperation in IV. IN-DEPTH BIOLOGICAL CHARACTERIZATION

Cracking down mixed infection

Infectious clones

Interactions between viruses (synergy / antagonism)

IV. IN-DEPTH BIOLOGICAL CHARACTERIZATION

Mode of transmission (horizontal and vertical)

- vectors ?

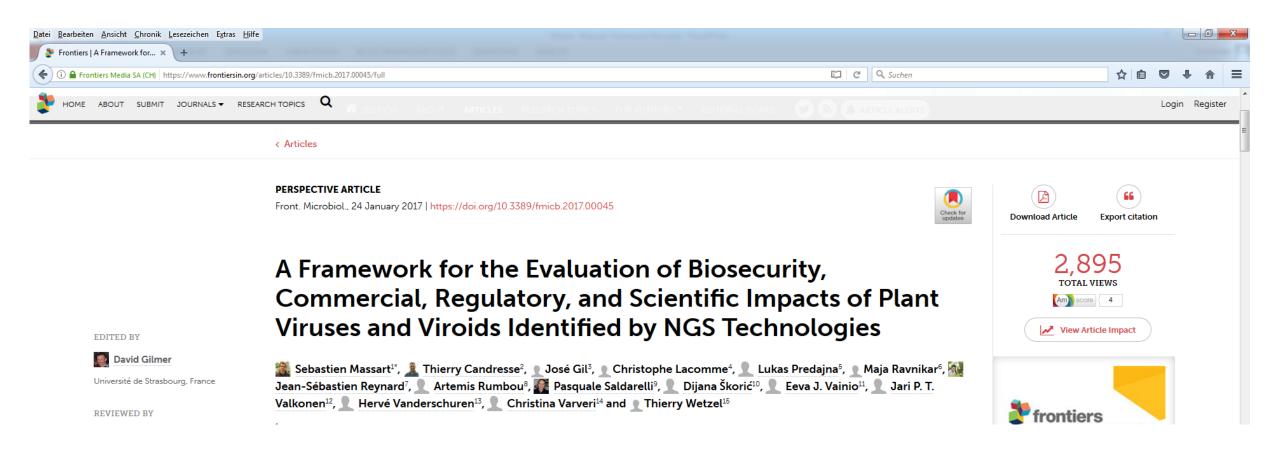
- Seeds, pollen ?
- grafting, mechanical transmission?

IV. IN-DEPTH BIOLOGICAL CHARACTERIZATION

- Host range > woody / herbaceous plants
- Survey at larger scales (global epidemiology)
- Antibody / detection tests development

CONCLUSION

- IMPACT ON REGULATION



=> HELP SCIENTISTS / AUTHORITIES

- ESTABLISHING PRIORITIES - DECISION MAKING

LOT OF OPEN QUESTIONS.....

AKNOWLEDGMENTS

ACKNOWLEDGMENTS

We thank Francoise Petter and Baldissera Giovanni (EPPO) for their input and critical reading of the manuscript.