

Digital tools to support infield assessments of efficacy trials

Case study: assessment of foliar disease in cereals EPPO Workshop, Ede, NLs, June 2022

Digital Assessments in R&D Field Trials

What

How

"Robust" algorithms

Digital tools:

Efficient system to capture, preprocess images, hosting models and reporting Integrated in the execution of field trials

Easy-to-use multi spectral cameras

Algorithm portfolio

Examples

Counting Insects at leaf level

basf.sharepoint.com

Target: Organism: BEMITA (adults IV-IV), FRANOC (adults), FRANOC (nymphs), MYZUPE & APHIGO Part of the plant: Leaf (BX, BU) Crops Validated crops: SOLME & LYPES Other crops: available, but to be validated Sensor Handheld device: Smartphone or digita...

Weed Assessment

Target: Organism: Broad leaf weeds & Grasses Part: Plot level Assessment: % coverage & % herbicide injury by organism. Crops Validated crops: Soybean (GLXMA) Com (ZEAMX), Sunflower (HELAN) Other crops: available, but to be validated Sensor Handheld...

Diseases Assessment at leaf level (Handheld device)

basf.sharepoint.com

Target: Organism: several diseases (SEPTTR, PUCCC, etc) Part: Leaf level (81, 82, 83, 8X, 8U) Assessment: % infection by disease. Crops Validated crops: Wheat, Barley, Cucumber, grapes, corn Other crops: available (rice, OSR), but to be validated Se...

Wheat Diseases (Drone)

basf.sharepoint.com

Target: Organism: SEPPTR, PUCCRT, PUCCST Part of the plant B1, B2, B3, BX. Prediction of leaf layers per plot Crops Validated crops: Wheat TRZAW Sensor Multispectral sensor (Micasense RedEdge MX) in a multicopter drone Deployed in: iQarus Status Al...

LEPTMA in OSR

basf.sharepoint.com

Target: Prediction of % Infection of LEPTMA at stem / root neck (transversal cut) Organism: LEPTMA Leptosphaeria maculans, anamorph : Phoma lingam : Part of the plant: HS (stem), WC (root neck) Crops Oil Seed Rape / Canola BRSNW, BRSNS... Se...

LAI. Leaf Area Index using multi-spectral cameras with drones

basf.sharepoint.com

Prediction of Leaf Area Index using multispectral cameras from drones Target: Organism: NNNNN (crop) Part of the plant: TPLOT (Plot) Assessment: Assessment Method: LEPTMA / YPFFRA / P%INF / HS or WC / UNIT Crops All Sensor Multispectral camera (Mica...

PHYEVI Feeding damage Flea Beetle in OSR

basf.sharepoint.com

Prediction of % of Feeding damage produced by PHYEVI in OSR at early stages of the crop. Plot pictures Target: Organism: PHYEVI Part of the plant: PX (Plant) Assessment: % infection by HS / WC. Crops Oil Seed Rape / Canola BRSNW, BRSNS, Growth stage...

Algorithm development

Multi disciplinary team

- Agronomic expertise
- Capabilities on deep learning (internal & external)
- IT & Hardware (Sensor & equipment)

Tools

Disease assessment at foliar level – Idea

Define the use case: prediction's outcome, part of the plant rated, accuracy / benchmark

Prediction of % infection at foliar level by disease

Target:

- Organisms & Crops (selected list) Wheat, Cucumber, Grapes
- Part of plant rated: Leaf
- Assessment: % Infection

Sensor:

- Smartphone & Digital Camera
- Drone (another project)

Examples

Step	Сгор	Disease	Name Scientific	Plant Part
First Step: Cereals	TRZAW	SEPTTR	Zymoseptoria tritici	Leaf (BX, B1, B2, B3)
	TRZAW	LEPTNO	Septoria nodorum (Parastagonospora nodorum)	Leaf (BX, B1, B2, B3)
	TRZAW	PUCCST	Puccinia striiformis	Leaf (BX, B1, B2, B3)
	TRZAW	PUCCRT	Puccinia recondita	Leaf (BX, B1, B2, B3)
	TRZAW	PYRNTR	Drechslera tritici-repentis	Leaf (BX, B1, B2, B3)
Second Step: Specialty crops	CUMSA	SPHRFU	Sphaerotheca fuliginea	Leaf (BX)
	VITVI	PLASVI	Plasmopara viticola	Leaf (BX)
	VITVI	GUIGBI	<u>Guignardia bidwellii</u>	Leaf (BX)

Disease assessment at foliar level – Data acquisition

Selection sensor / equipment / Describe SOP / Creation of a data set

- Standard Operation Procedure (SOP) to take the picture
 - Adjust Field of View (FoV) to the leaf area
 - ▶ Try to maintain the leaf as flat as possible
 - Search for homogeneous illumination
 - Search for right focus

- Ensure quality
 - Variability: Pictures from different sites / technicians which should represent the reality
 - Balanced data sets: having a balanced data representing low – medium – high disease

BASF

- Assessments / Ground Truth
- Align assessment method with the target

Disease assessment at foliar level – Model development

Data set preparation (annotation) / Selection of algorithm type / Target accuracy

- Data set preparation:
 - Field trial researchers to label with the ground truth (%INF at leaf level)
 - Check the quality of the data
 - Data set shows variability
 - Balanced data set
 - Annotation quality: to determine the quality of the technician
- The label / annotation quality has a high impact on the accuracy of the algorithm

Disease assessment at foliar level – Model development

Annotation can be a time intensive task which requires a high agronomic knowledge¹

Example: Algorithm for herbicide trials

BASF We create chemistry

DIG-E20-001-CAM-P04-01-A-T.jpg; collection: 2018A1; channels: rgb; scale: 0.38 mm/px; size: 6000x4000 [2250x1500 mm]

Disease assessment at foliar level – Model development

Data set preparation (annotation) / Selection of algorithm type / **Target accuracy**

The case requests 3 different models

Identify the leaves

 \rightarrow Segmentation model

 \rightarrow Classification model

Classify the disease in the leaf

Quantify the disease \rightarrow Regression model Phase 2

<u>___</u>

Phase

Model approaches Scientific paper

Part of the work performed during the development of the algorithm supported the publication of a scientific paper in "frontiers in Plant Science"

frontiers in Plant Science

ORIGINAL RESEARCH published: 07 March 2022 dol: 10.3389/lpls.2022.813237

Analysis of Few-Shot Techniques for **Fungal Plant Disease Classification** and Evaluation of Clustering **Capabilities Over Real Datasets**

Itziar Egusquiza^{1,2*}, Artzai Picon^{1,2}, Unai Irusta², Arantza Bereciartua-Perez¹, Till Eggers³, Christian Klukas³, Elisabete Aramendi² and Ramon Navarra-Mestre³

¹ TECNALIA, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkala, Derlo, Spain, ² University of the Basque Country, Bilbao, Spain, ²BASF SE, Limburgerhof, Germany

EYRSGR (Burnenia graminis), PRVNTE (Pyrenophora teros), FAMUCC (Famulatia collo-cygni), Ri frNSE (Fitynchosportum secalis), PUCCHD (Pucchia horder), DIRTYP (Melous diseases), RHI2SO (Thanatephorus cucuments), PYROR (Pericularity onzue), SETOTU (Helminthosportum functum), and LEPTMA (Phorna Ingam),

Disease assessment at foliar level – Validation

Defining KPIs to validate / Validation of the algorithm with new data sets

- New data sets from other users & locations
- To check that the acquisition of data is efficient, and SOP is scalable
- To check the robustness of model: accuracy should be maintained
- If not reached, new data sets should be included
- To communicate / involve the biology project leads in the evaluation

Disease assessment at foliar level – Deployment

Ensuring deployments does not affect algorithm's performance

- Good alignment between
 - Algorithm developers
 - Product owners of digital tools
- Ensure a smooth deployment to the digital tool
 - Algorithm not only work in the development environment but in productive
 - Recommended to perform reality checks in productive environments

Digital platform for handheld devices & robots

Algorithm in use

Disease assessment at foliar level – Monitoring & calibration

Calibration at image level: comparing visual & digital assessments in regular base (yearly)

Regression Plot

Counting BEMITA adults alive at leaf level – Monitoring & calibration

Calibration in a trial: comparing visual & digital assessments in regular base (yearly)

- Algorithm
 - Counting alive BEMITA at leaf level
- Counting BEMITA adults alive at leaf level
 DEV-x-2022-xx-xxx-x-xx.x-ES-E20-029
 - All evaluations by visual & digital method

Result

- Number of adults counted: slight differences
- Efficacy analysis: same conclusions
- Conclusion
 - Algorithm can be further used

DEV-x-2022-xx-xxx-x-xx.x-ES-E20-029 A05 Number of adults / plant (average of 4 replications)

Disease assessment at foliar level – Next steps & new ideas

From foliar level to plot level

Key success factors in developing a digital assessment

Good definition of each case

Starting any new case, the approach should be clearly defined including a good standard procedure on acquiring data & images, definition of sensors and equipment, creation of a divers and balanced dataset and considering the scaling up: it should improve **quality**, be **efficient** and **scalable**

Teamwork

цт‡

Digital assessments are the result of a multi-disciplinary team covering agronomic, model development and IT expertise

Digital tools for users

Digital assessment platforms should be **user-friendly** for the field technicians, **integrated** in the established processes of executing trials and **connected** to existing R&D tools to allow for **visualization** of the data

Digital platforms for algorithm development:

It is essential that the model development platforms should be transparent, traceable, reproductible and collaborative

We create chemistry

- Vision: In 5 years, all R&D field trials will be (partially) assessed with digital tools.
- Digital Tools for assessing trials

Field Researchers will have the responsibility of **ensuring good field trialing** and **having digital skills**

